HATS: Highly Adaptable & Trustworthy Software Using Formal Models
— Report from the Coordinator —

Reiner Hähnle
Technical University of Darmstadt, Germany

Fourth Annual HATS Project Meeting
Valencia 4–6 September 2012

December 3, 2012

http://www.hats-project.eu
Project Status

▶ Project started 1 March 2009, all participants are active as planned
▶ > 70 people involved in HATS (according to hats-all), 40 here
▶ Funding for 4th period received 1 Aug 2012
 • Only small amount, as remaining 15% withheld until Final Report ready
 (10% to be paid after final report, 5% contingency fund)
 • Hence, no transfer made to participants at this time
▶ More details on finances by Per, after my presentation
▶ More details on dissemination by Karina, on Thursday
Mind the Gap!

Design-oriented, architectural, structural
UML, FDL, etc.

Implementation level
JML, SPEC#, etc.

Minimalistic foundational
π-calculus, ambient c., etc.

Abstract Behavioural Specification
ABS

+ executability
+ verifiability
+ usability

R. Hähnle
HATS Report from the Coordinator 120904 2 / 14
Mind the Gap!

Design-oriented, architectural, structural
UML, FDL, etc.

Abstract Behavioural Specification
ABS

+ executability

Realistic

Implementation level
JML, SPEC#, etc.

Abstract

Minimalistic foundational
π-calculus, ambient c., etc.

+ verifiability

+ usability
What We Deliver

A tool-supported formal method for building highly adaptable and trustworthy software

Main ingredients

1. Executable, formal modeling language for adaptable software: Abstract Behavioral Specification (ABS) language
2. Tool suite for ABS/executable code analysis & development:
 - Analytic: functional/behavioral verification, resource analysis, feature consistency, RAC, types, TCG, visualization
 - Generative: code generation, model mining, monitor inlining, ...

Develop methods in tandem with ABS to ensure scalability

3. Methodological and technological framework integrating HATS tool architecture and ABS language
Vision Reality: A Single-Source Technology for Highly Adaptive, Concurrent Software Systems
The Main Innovations of HATS

A formal, executable, abstract, behavioral modeling language

- Cutting-edge research on modeling of concurrent, OO systems
- Combines state-of-art in verification, concurrency, specification, and programming languages communities
- Adaptability drives the design

Scalable technologies developed in tandem with ABS

- Incremental, compositional
- Analytic as well as generative technologies

Formalization of PLE-based development as main application

- Leveraging formal methods tools to PLE
- Define FM-based development methodology for PLE
Work Organisation in HATS

WP5: Validation

WP4: Trustworthiness
 cross-cutting qualities

WP3: Evolvability
 unanticipated change

WP2: Variability
 anticipated change

WP1: Framework
 language design, methodology, tool infrastructure, integration
Development Methods

- Delta modeling workflow based on abstract delta modeling (T5.3)
- End-to-end product derivation with correction, optimization (T1.4)

Analysis Methods in particular, at feature modeling level

- Near/far location type analysis (T1.3), deadlock analysis (T4.3)
- Type system for checking type-safety of delta models (T2.4)
- Glass box test case generator and ABSUnit framework (T2.3)
- Deductive, sound compilation from ABS to bytecode (T2.6)
- KeY-ABS formal verification (T4.3)

Generative Methods

- Model mining from code, traces, product descriptions (T3.2)
- Automatic construction of crypto protocol implementation (T4.1)
- Scala backend for ABS (T1.4)

Security Policies

- Information-flow type system for core ABS (T4.1)
- Logic-based and dynamic enforcement of security policies (T4.1)
Dynamic Aspects, Evolvability

- Deployment components to model low-level notions (T2.1)
 - Schedulers, load, bandwidth
 - Real-time ABS
- Abstract failure model and type system (T2.1, T2.4)
- ABS component model (T2.1, T3.3)
- ABS-NET: semantics for network-aware runtime ABS (T3.5)

Evaluation & Exploitation

- Fredhopper Access Server replication system (T5.3)
 - Modeled with Full ABS as basis for validation of M2
- Some models in S.P.L.O.T. feature model repository (T5.3)
- Finalized list of exploitable items (T6.2)

User Interface

- Workflow-driven user interface with extension guidelines (T1.3)
Third Annual Project Review

Project Officer
Roumen Borissov

Reviewers

- Patrick Heymans, University of Namur
- Marco Roveri, Fondazione Bruno Kessler
- Kaisa Sere, Åbo Academy (offline due to illness)
- Martin Wirsing, LMU Munich

22nd-23rd March 2012 in Tallinn, IoC premisses

- Present:
 Reiner, Einar, Arnd, Rudi, Davide, Mario, Elvira, Richard, Gilles, Wolfgang, Per, José, Peter, Bjarte, Mads, Frank, Taslim, Tarmo
- Preparation meeting 21st March 2012
- Went very well (“good to excellent” progress)
Third Annual Project Review: Main Recommendations

1. Validation: more objective and quantitative evaluation (WP5)
 - Quantitative comparison between FRH code and its ABS model
 - Discuss advantages using the HATS methodology wrt current practice
 - All the developed techniques and tools shall be applied to the considered case studies (otherwise, corrective actions or justification)
 - Table with considered/covered requirements for each case study
 - List of tools applied on each case study

2. Classification of verification properties, their role and relevance in PLE

3. A systematic approach for the use of verification properties

4. Better define the objectives and scope of Configuration (T4.4)

5. All functionalities and techniques integrated in tool chain

6. Increase number of joint journal publications, develop book summarizing the major results, propose tutorials at major conferences

7. Technology papers (as promised in the slides at review)

8. Excerpt of the feedback from SAB and EUP shall be provided

All deliverables in 3rd reporting period (PM15–36) accepted w/o changes!
Active/Upcoming Work Tasks

See also HATS Website “Work Plan|WP Timing & Deliverables”

WP1: Framework (UKL)
1.5 NR, PM 25–48 Integrated Tool Platform

WP2: Analysis (UIO), PM45: Analysis Final Report (TUD)

WP3: Evolvability (KTH)
3.3 KUL, PM 24–46 Hybrid Analysis for Evolvability
3.5 KTH, PM 24–48 Autonomously Evolving Systems

WP4: Trustworthiness (UPM)
4.3 BOL, PM 24–48 Correctness
4.4 FRG, PM 30–45 Auto Configuration and Quality Variability

WP5: Validation (FRH)
5.4 FRH, PM 30–48 Evaluation of Tools & Techniques
<table>
<thead>
<tr>
<th>Del. no.</th>
<th>Deliverable name</th>
<th>WP no.</th>
<th>Lead beneficiary</th>
<th>Nature</th>
<th>Dissemination level</th>
<th>Delivery date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.5</td>
<td>Integrated tool platform</td>
<td>1</td>
<td>NR</td>
<td>report</td>
<td>public</td>
<td>48</td>
<td>early start</td>
</tr>
<tr>
<td>D2.7</td>
<td>Analysis final report</td>
<td>2</td>
<td>TUD</td>
<td>report</td>
<td>public</td>
<td>45</td>
<td>multiple tasks, shifted</td>
</tr>
<tr>
<td>D3.3</td>
<td>Hybrid analysis for evolvability</td>
<td>3</td>
<td>KUL</td>
<td>report</td>
<td>public</td>
<td>46</td>
<td>shifted</td>
</tr>
<tr>
<td>D3.6</td>
<td>Final Report</td>
<td>3</td>
<td>KTH</td>
<td>report</td>
<td>public</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>D3.5</td>
<td>Autonomously evolving systems</td>
<td>3</td>
<td>KTH</td>
<td>report</td>
<td>public</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>D4.3</td>
<td>Correctness</td>
<td>4</td>
<td>BOL</td>
<td>report</td>
<td>public</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>D4.4</td>
<td>Auto configuration quality variability</td>
<td>4</td>
<td>FRG</td>
<td>report</td>
<td>public</td>
<td>45</td>
<td>part of M4 shifted</td>
</tr>
<tr>
<td>D5.4</td>
<td>Evaluation of tools & techniques</td>
<td>5</td>
<td>FRH</td>
<td>report</td>
<td>public</td>
<td>48</td>
<td>validates M3, M4</td>
</tr>
<tr>
<td>D6.3</td>
<td>Training Material</td>
<td>6</td>
<td>BOL</td>
<td>report</td>
<td>public</td>
<td>48</td>
<td>PhD school proceedings</td>
</tr>
</tbody>
</table>
Scientific Advisory Board (SAB) & End-User Panel (EUP)

Scientific Advisory Board (SAB)

The SAB helps the SC with follow-up of work package activities

▶ Ferrucio Damiani, University of Torino, Italy
▶ Sophia Drossopoulou, Imperial College London, UK
▶ Ugo Montanari, University of Pisa, Italy
▶ Frank van der Linden, Philips Electronics N.V., The Netherlands

End-User Panel (EUP), Confirmed members, to be extended!

Project-external companies interested in the HATS technology

▶ Gian Luca Cattani, MAPS SpA, Italy
▶ Dario Avallone, Engineering Ingegneria Informatica, Italy
▶ Thomas Santen, European Microsoft Innovation Center, Germany
▶ Andreas Roth, SAP AG, Walldorf, Germany
▶ James Hunt, aicas GmbH, Karlsruhe, Germany
▶ Marco Pistore, Fondazione Bruno Kessler, Trento, Italy
▶ Thomas Walter, DOCOMO Euro-Labs, Munich, Germany
Summary: Main Results and Achievements

- Passed second project review with very encouraging feedback
- All deliverables of third period approved w/o revision
- Work started/on track in all active Work Tasks
- Many dedicated WT meetings, good participation
- All participants highly motivated
- Very good publication record (FMCO track, ISoLA track)
- Good dissemination events (FMSPLE, Ericsson, SAP, Google)
- HATS Summer School in Bertinoro
- SAB and EUP participate in AMs, 2 of 3 SAB members present
- Continued strong presence in EternalS CA