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Abstract. The HATS project aims at developing a model-centric engi-
neering methodology for the design, implementation and verification of
distributed, concurrent and highly configurable systems. Such systems
also have high demands on their dependability and trustworthiness. The
HATS approach is centered around the Abstract Behavioural Specifi-
cation modelling language (ABS) and its accompanying tools suite. The
HATS approach allows precisely specifying and analyzing the abstract be-
haviour of distributed software systems and their variability. The HATS
project measures its success by applying its framework not only to toy
examples, but to real industrial scenarios. In this paper, we evaluate the
HATS approach for modelling an industrial scale case study provided
by the eCommerce company Fredhopper. In this case study we consider
Fredhopper Access Server (FAS). We model the commonality and vari-
ability of FAS’s replication system using the ABS language and provide
an evaluation based on our experience.
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1 Introduction

Software systems evolve to meet changing requirements over time. Evolving soft-
ware systems may require substantial changes to the software and often result
in quality regressions. After a change in a software system, typically some work
is needed in order to regain the trust of its users. The “Highly Adaptable and
Trustworthy Software using Formal Models” (HATS) project aims at developing
tools, techniques and a formal software product line (SPL) development method-
ology [10, 34] for rigorously engineering distributed software systems are subject
to changes.

? This research is partly funded by the EU project FP7-231620 HATS: Highly Adapt-
able and Trustworthy Software using Formal Models (http://www.hats-project.eu).



The HATS approach is centered around the Abstract Behavioural Specifica-
tion (ABS) modelling language [23, 13], an accompanying ABS tool suite [11,
36] and a formal engineering methodology for developing SPL [10]. ABS facil-
itates to model precisely SPLs of distributed concurrent systems, focusing on
their functionality, while providing the abstraction to express concerns, such as
available resources, deployment scenarios and scheduling policies. In particular,
the language of ABS provides modelling concepts for specifying SPL’s variability
from the level of feature models down to object behaviour. This permits large
scale reuse within SPLs and rapid product construction during the application
engineering phase of the SPL engineering methodolody [10].

In this paper, we evaluate the application of the HATS approach to an indus-
trial SPL case study of the Fredhopper Access Server (FAS) product line. FAS,
developed by Fredhopper B.V. (www.fredhopper.com), is a distributed service-
oriented software system for Internet search and merchandising. In particular
we consider FAS’s replication system; the replication system ensures data con-
sistency across the FAS deployment. We use this case study to evaluate the HATS
approach with respect to the following criteria, derived during the requirement
elicitation activity conducted at the beginning of the HATS project [17]:

Expressiveness We evaluate the ABS language with respect to its practical
language expressiveness. We investigate from the user’s perspective how
readily and concisely ABS allows users to express program structures and
behavior, and its capability to capture variability in SPLs.

Scalability We evaluate the ABS language with respect to the size and the
complexity of the modelled system. It is important to provide mechanisms
at the language level that permit separations of concerns, reuse and compo-
sitional development of SPLs.

Usability We evaluate the HATS approach with respect to its overall usability,
focussing on the ease of adoption and learnability. We take into account the
tool support, as well as the language’s syntax and semantics.

The structure of this paper is as follows: Section 2 briefly presents the HATS
approach; Section 3 describes the functionality of the Fredhopper Access Server
(FAS) product line and its replication system; Section 4 considers how to model
the replication system’s commonality using ABS; Section 5 considers how to
model the replication system’s variability using ABS. We present an evaluation
based on our experience using ABS in Section 6. We provide an overview of the
existing approaches to model and analyse concurrent distributed systems with
variabilities in Section 7 and a summary of this paper in Section 8.

2 HATS approach

The HATS approach is designed as a formal methodology for developing SPL [10].
The HATS methodology is a combination of the ABS language, a set of well-
defined techniques and tool suite for ABS, and a formal methodology to bind
them to specific steps in a SPL development process. ABS comprises a core



language with specialised language extensions, each focusing on a particular
aspect of modelling SPLs, while respecting the separation of concerns principle
and encouraging reuse.

The Core ABS is a strongly typed, concurrent, object-based modelling lan-
guage with a formal executable semantics and a type system [23]. The Core
ABS consists of a functional and a concurrent object levels: The functional level
provides a flexible way to model internal data in concurrent objects, while sepa-
rating the concerns of internal computation from the model; this is an important
language feature for scalability. The functional level supports user-defined para-
metric data types and functions with pattern matching. The concurrent object
level is used to capture concurrent control flow and communication in ABS mod-
els; the concurrency model of the Core ABS is based on the concept of Concurrent
Object Groups. A typical ABS model consists of multiple object groups at run-
time. These groups can be regarded as autonomous, runtime components that
are executed concurrently, share no state and communicate asynchronously. The
core ABS’s object-based model structure provides a good fit with UML mod-
elling approaches, while its type system guarantee type safety at runtime for
well typed core ABS models. The core ABS’s executable semantics supports
early verification and validation.

The ABS then extends the Core ABS with the following specialised exten-
sions [13].

– The Micro Textual Variability Language (µTVL), based on Classen et al.’s
TVL [14], expresses the variability of SPL at the level of feature models
during the family engineering phase of the SPL engineering process.

– The Delta Modeling Language (DML), based on delta modelling [33], models
variability of SPL at the level of object behavior during the family engineer-
ing phase of the SPL engineering process. The variability at the behavioral
level is represented by a set of delta modules that contain modifications of
the ABS model of software artifacts in SPL, such as additions, modifications
and removals of model entities. Delta modules provides the capability to
define generic software artifacts in SPL.

– The Product Line Configuration Language (CL) connects the variability of
SPL from feature models down to object behavior by specifying the relation-
ship between features and delta modules. Each delta module is associated
with one or more feature in the feature model, thereby allowing reuse delta
modules across features in the SPL.

– The Product Selection Language (PSL) specifies individual products in the
SPL by providing a particular feature selection along with its initialization
code.

The ABS tools suite [36] includes an ABS compiler front end, which takes
a complete ABS model of the SPL as input, checks the model for syntax and
semantic errors and translates it into an internal representation. The front end
supports automatic product generation, variability of the SPL can be resolved
by applying the corresponding sequence of delta modules to its core ABS model
at compile time; variability resolution is one of the core activities during the
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Fig. 1. An example of a FAS deployment

application engineering phase of the SPL. Different back ends translate the
internal representation into Maude or Java, allowing ABS models to be exe-
cuted and analyzed. The tools suite also includes a plug-in for the Eclipse IDE
(www.eclipse.org). The plugin provides an Eclipse perspective for navigating,
editing, visualizing, and type checking ABS models, and an integration with the
back ends, so that ABS models can be executed or simulated directly from the
IDE.

3 Fredhopper Access Server

The Fredhopper Access Server (FAS) is a component-based and service-oriented
distributed software system. It provides search and merchandising services to e-
Commerce companies such as large catalogue traders, travel agencies, etc. Each
FAS installation is deployed to a customer according to the FAS deployment
architecture. Figure 1 shows an example setup. A detailed presentation of FAS’s
individual components and its deployment model can be found in the HATS
project report [18].

A FAS deployment consists of a set of live and staging environments. A live
environment processes queries from client web applications via web services. FAS
aims at providing a constant query capacity to client-side web applications. A
staging environment is responsible for receiving data updates in XML format,
indexing the XML, and distributing the resulting indices across all live environ-
ments according to the replication protocol.

Implementations of the replication protocol are provided by the replication
system. A replication system consists of a set of computation nodes; one of
which is the synchronization server residing in a staging environment, while
all other nodes are synchronization clients residing in the live environments.
The synchronization server takes care of determining the schedule of replication,
as well as the content of each replication item. The synchronization client is
responsible for receiving data and configuration updates. A replication item is a
set of files and represents a single unit of replicable data.



SyncServer

ConnectionThread Acceptor Coordinator

starts becomes
ReplicationSnapshot

11 3 contains

*

1
starts/finishes replication4 

3 refreshs/cleans

ReplicationItem

1

*
contains

get items from

* 1

3 starts

3 suspends/resumes

SyncClientClientJob

11schedules

1
1

schedules

(a)

(b)

Fig. 2. Class diagram of (a) synchronisation server and (b) synchronisation client

The synchronization server communicate to clients via connection threads
that serve as the interface to the server-side of the replication protocol. On the
other hand, synchronization clients schedule client jobs to handle communica-
tions to the client-side of the replication protocol. In our ABS model, both con-
nection threads and client jobs belong to separate concurrent object groups [23]
(a mechanism to structure the object heap into separate units) and communicate
via asynchronous method invocations. Cooperative multitasking and strict data
encapsulation between the concurrent object groups prevent deadlocks and race
conditions.

As part of the FAS product line, the replication system defines variability on
the types of replication items, the coordination policy of replication and the re-
source consumption during replication. This allows members of the product line
to be tailored for FAS deployments with specific data requirement and platform
resource constraints.

4 Modelling Commonality

In this section, we present how to model the replication system’s commonality
using the Core ABS. Figures 2(a) and (b) show the UML class diagram of the
synchronization server and client respectively. The synchronization server con-
sists of an acceptor, several connection threads, a coordinator, a SyncServer and
a replication snapshot. The synchronization client consists of a SyncClient and
one or more client jobs. Listing 1.1 shows the ABS interfaces for the core com-
ponents of the synchronization server and clients. For brevity, we have omitted
ABS class definitions.



The Acceptor component is responsible for accepting connections from the
synchronization clients and is specified by the interface Acceptor. The interface
provides a method for a client job to obtain a reference to a connection thread,
as well as methods to enable and disable the synchronization server to accept a
new client job connection.

interface ConThread { Unit command(Command c); }

interface Acceptor {

ConThread getConnection(Job job);

Bool isAcceptingConnection();

Unit suspendConnection();

Unit resumingConnection(); }

interface Coordinator {

Unit process();

Unit startUpdate(ConThread worker);

Unit finishUpdate(ConThread worker);}

interface SyncServer {

Acceptor getAcceptor();

Coordinator getCoordinator();

Snapshot getSnapshot();

DB getDataBase(); }

interface Snapshot {

Unit refreshSnapshot(Bool r);

Unit clearSnapshot();

Set<Item> getItems();}

interface Item {

FileEntry getContents();

ItemType getType();

Id getAbsoluteDir();

Unit refresh();

Unit cleanup();}

interface SyncClient {

Acceptor getAcceptor();

DB getDataBase();

Unit becomesState(State state);

Unit setAcceptor(Acceptor acceptor);}

interface Job {

Bool registerItems(CheckPoint checkpoint);

Maybe<FileSize> processFile(Id id);

Unit processContent(File file);

Unit receiveSchedule();}

Listing 1.1. ABS interfaces of the replication system
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Fig. 3. Feature model of the Replication System

The connection thread and the client job are specified by interfaces ConThread

and Job, respectively. Each connection thread is instantiated by the Acceptor com-
ponent. After the Acceptor receives a connection from a client job, it instantiates
a ConThread to carry out the replication protocol. A connection thread is speci-
fied by the interface ConThread. The ConThread component has a single method
command(), which is asynchronously invoked by Job objects to determine the
current state of a replication. The Coordinator component is responsible for coor-
dinating the connections that the Acceptor accepts from synchronization clients.
It also provides methods for preparing and clearing replication items before and
after replication sessions. The SyncServer component starts the Acceptor and the
Coordinator components. It also keeps a reference to the relevant replication snap-
shot, i.e., the data that is currently being replicated.

Listing 1.1 also shows the ABS interfaces of the components that are part of
the synchronization clients. A SyncClient communicates with the SyncServer via job
scheduling. At initialization time, the SyncClient schedules a client job to acquire
a replication schedule from the server. Using this schedule, the client job creates a
new client job for performing the actual replication. Each client job, thereafter, is
responsible to request replication schedules and to set up the subsequent jobs for
further replication. Each client job receives replication items from a connection
thread and updates the synchronization client’s files (configuration and data).
The client job is specified by interface Job.

5 Modelling Variability

As part of FAS product line, the replication system defines variability on the
types of replication item and replication strategy. We capture this variability
using the ABS language extensions described in Section 2.

Figure 3 shows the feature diagram of the replication system and Listing 1.2
shows the corresponding µTVL model. Specifically, the replication system has
three main features: JobProcessing, RepItem and Load.



The feature JobProcessing requires an alternative choice between the two sub
features Seq and Concur, capturing the choice between sequential and concurrent
client job processing, respectively.

The feature RepItem allows choosing between three replication item types
represented by the features Dir, File and Journal. The Dir feature is mandatory,
that is, all versions of the replication system support replicating complete file
directories. The File feature is optional and is selected to support replicating a
file set, whose files’ name matches a particular pattern. the Journal feature is
optional and is selected to support replicating database journal. In particular,
the Journal feature requires the feature Seq which means that variants of the
replication system that support database journal replication may only schedule
client jobs sequentially.

root ReplicationSystem {

group allof {

JobProcessing { group oneof { Seq, Concur }},

RepItem { group [1..*] { Dir, opt File, opt Journal { require: Seq; }}},

opt Load {

group [1..3] {

Client { Int c in [1 .. 20]; Seq -> c < 10; },

CheckPoint { Int cp in [1 .. 10]; Seq -> cp < 10; },

Schedule {

group [1..3] {

SSchedule { Int s in [1 .. 5]; },

FSchedule { Int f in [1 .. 5]; require: File; },

JSchedule { Int l in [1 .. 5]; require: Journal; }

}}}}}}

Listing 1.2. Feature model of the replication system in µTVL

The feature Load is an optional feature that configures the load of the repli-
cation system. It offers sub features Client, CheckPoint and Schedule. The feature
Client configures the number of synchronisation clients, and defines the constraint
such that if client job processing is sequential, the number of clients must be less
than ten. The feature CheckPoint configures the number of updates allowed per
execution, defines the constraint such that if the client job processing is sequen-
tial, the number of updates must be less than five. The feature Schedule configures
the number of locations in the file system at which changes to different replica-
tion item types are monitored. It is an optional feature that offers sub-features
SSchedule, FSchedule and JSchedule to record the number of locations for directory,
file set, and journal replication respectively. Note that FSchedule and JSchedule

cannot be selected unless features File and Journal are selected respectively.
The basis replication system supports sequential client job processing. This

functionality is implemented by the active class JobImpl. A partial ABS class def-
inition of JobImpl is shown in Listing 1.3. Each instance of the JobImpl class ini-
tialises the Boolean field newJob to False and invokes its run method. This method
in turn invokes scheduleNewJob() asynchronously. The method scheduleNewJob()

waits for field newJob to become True before creating a new instance of Job. Set-



ting newJob to True at the end of the run method ensures that each client job is
scheduled sequentially.

The lower half of Listing 1.3 defines the delta module Concurrent. A delta
module specifies changes to a basis ABS model, such as the addition, modifica-
tion or removal of classes, in order to define the shape of the model in another
system variant. The delta module Concurrent specifies a class modifier for the
class JobImpl that contains a method modifier. The method modifier removes the
await statement from the method scheduleNewJob() such that a new instance of
the class Job is created as soon as the current Job instance releases the lock of
this object group. This allows scheduling client jobs concurrently.

class JobImpl(SyncClient c, JobType job) implements Job {

Bool nj = False;

Unit newJob() { await nj; new JobImpl(this.c,Replication); }

Unit run() { .. this!newJob(); .. nj = True; .. }

Unit state(State state) { .. } ..

}

delta Concurrent {

modifies class JobImpl {

modifies Unit newJob() { new JobImpl(this.c,Replication); }}}

Listing 1.3. Modeling job processing

class Dirs(Id q, DB db) implements Item { .. }

class SnapshotImpl(DB db, Schedules ss)

implements Snapshot {

Set<Item> items = EmptySet;

Unit item(Schedule s) {

if (isSearchItem(s)) {

Item item = new Dirs(left(item(s)),this.db);
this.items = Insert(item,this.items);}..}}

Listing 1.4. Partial implementation of replication item

Listing 1.4 shows a partial definition of the classes DirectoryItem and
SnapshotImpl. The class DirectoryItem defines a replication item for a complete file
directory. The class SnapshotImpl represents a replication snapshot. The method
item defined in the class SnapshotImpl takes a replication schedule, creates a cor-
responding Item object and adds it to the set of replication items. By default,
this method only handles replication schedules for complete file directories.

In Listing 1.5, two delta modules are shown that contain the necessary func-
tionality and modifications to handle other types of replication items. The delta
module FileDelta is applied for file set replication and has three class modifiers.
The first modifier adds the class FItem, implementing the interface Item, for
handling replication file sets that match a regular expression. The second class
modifier changes the class SnapshotImpl by updating the method item to handle



replication schedules with file sets; here the statement original(s) calls the previ-
ous version of the method SnapshotImpl.item(s). The third class modifier changes
the initial Main by introducing a new instance field files that records a list of
schedules for file set replications. Similarly, the delta module JournalDelta con-
tains the necessary modifications for handling database journal replication. It
has three class modifiers to add a new implementation of interface Item, to up-
date the method item to handle replication schedules with data base journals
and to add new instance field logs that records a list of schedules for database
journal replications.

delta FileDelta {

adds class FItem(Id q, String p, DB db)

implements Item { .. }

modifies class SnapshotImpl {

modifies Unit item(Schedule s) {

original(s);
if (isFileItem(s)) {

Pair<Id,String> it = right(item(s));

Item item = new FItem(fst(it),snd(it),this.db);
items = Insert(item,items);

}}}

modifies class Main { adds List<Schedule> files = ... }

}

delta JournalDelta {

adds class Journals(..) implements Item { .. }

modifies class SnapshotImpl { .. modifies Unit item(..) ..}}

modifies class Main { adds List<Schedule> logs = ... }

Listing 1.5. Deltas for replication items

Listing 1.6 shows the configuration of the replication system product line
using the product line configuration language CL. The product line configura-
tion links the modifications contained in the listed delta modules to product
features and determines for which feature configurations the modifications have
to be applied. In the considered example, the features Dir and Seq are the fea-
tures provided by the core system. The application condition for delta module
FileDelta states that this delta module is applied if feature File is selected, while
the application condition for the delta module FSched states that the module is
applied if feature FSchedule is selected and that it must be applied after delta
module SSched should its corresponding feature be selected.

Listing 1.6 also shows two example product selections for the replication
system product line specified in the product selection language PSL. Product
P1 defines the basis variant of the replication system that supports the basic
set of features, and product P2 that supports both directory and file set replica-
tion, concurrent client job scheduling and deploys three SyncClients for receiving
replications.



productline ReplicationSystem {

features Dir, File, Journal, Seq, Concur, Client, Schedule, CheckPoint,

SSchedule, FSchedule, JSchedule;

delta FileDelta when File;

delta JournalDelta when Journal;

delta Concurrent when Concur;

delta CD(Client.c) when Client;

delta CP(CheckPoint.cp) when CheckPoint;

delta SSched(SSchedule.s) when SSchedule;

delta FSched(FSchedule.f) after SSched when FSchedule;

delta JSched(JSchedule.l) after FSched when JSchedule;

}

product P1 (Dir, Seq);

product P2 (Dir, File, Concur, Client({c=3}));

Listing 1.6. Product configuration and selection

6 Evaluation

This section presents an evaluation of the HATS approach with respect to the
ABS language’s expressiveness, scalability and usability. The specific criteria
have been derived from the HATS project’s requirement elicitation activity [17].

6.1 Expressiveness

We evaluate the practical expressiveness and the modeling capabilities of the
ABS language. Specifically we investigate 1) how readily and concisely the ABS
language expresses various kinds of program structures and behaviours, and 2)
its capabilities to express variabilities behaviourally.

Data types Using ABS’s algebraic data type, we were able to provide a high-
level model of the replication system that abstracts from the underlying
physical environment such as operating system, file storage and data base.

Functions Using the combination of ABS’s algebraic data types and functions,
we were able to use abstract data types such as lists, sets and maps, and
subsequently define data types to abstract from the underlying environment
such as file storage. We have also found functions to be useful as they guar-
antee to be free of side-effects and are more amenable to formal reasonsing.
However, the ABS language does not support higher order functions. This
means we cannot abstract certain behaviour, limiting reusability of function
definition. This also implies that we cannot pass functions as parameters to
methods.



Polymorphism ABS’s algebraic data types and functions support parametric
polymporhism, allowing data types and functions to be data-independently
defined. However, this ABS classes and methods are not parametrically poly-
morphic, hence one has to specialise the types of method parameters, reduc-
ing the reusability of method implementations.

Syntactic Sugaring To model communications between active ob-
jects in ABS we often define the sequence of statements
Fut<A> f = o!m(); await f?; A v = f.get; in an active object to model in-
voking method m() of object o asynchronously, yielding the thread control
of its object group and blocking its own execution until the method call
returns. We believe the usability of the language could be improved by
providing syntactic sugaring to this kind of patterns of behaviours, and at
the time of writing we know this types of sugaring are being added to the
ABS language.

Concurrency We were able to model the replication system’s concurrent be-
haviour in terms of asynchronous method invocation, this ABS model pro-
vides a high level view of the communication between synchronisation server
and clients, thereby separating the concerns of the physical communication
layers between them and hence reducing the complexity of the model con-
siderably. Another advantage of the cooperative scheduling offered by ABS’s
concurrency model is that we can safely define a method that modifies a
state of an object without the need to explicitly enforce mutual exclusion
on that state. Nevertheless, due to inherent nondeterministic scheduling be-
tween COGs as well as active objects within a COG [23], it is not possible
to enforce fairness over competing active objects when simulating an ABS
model. At the time of writing an implementation of a real-time extension of
the ABS language is being developed [24]. This would provide the mechanism
to specify schedules on the asynchronous method invocations, and allow us
to enforce orders of execution to avoid starvation.

Variability Delta Modelling Language offers the expressivity to specify vari-
ability at the level of object behaviour. Together with Product Line Con-
figuration, Product Selection and µTVL Language, the ABS language offers
a holistic approach to expressing variabilities as features and relating them
to object behaviour. We were able to use ABS to incrementally and compo-
sitionally develop the replication system product line that yields members
that are well-typed and valid with respect to the product line’s variability.
Nevertheless, the current implementation of DML does not support modifi-
cation of functions and data types, and this means we cannot capture their
variabilities in the same way as classes and interfaces. At the time of writing,
we know the implementation of DML is being improved to support functions
and data types.

6.2 Scalability

We evaluate the ABS language with respect to scalability and reusability.



Data types Using ABS’s algebraic data types, we separate the concern of the
replication system’s physical environments such as operation system, file
storage and data bases from its ABS model. This allows us to scale the
replication system product line model, such as increasing the number of
SynClients, without being constrained by the physical environment.

Modularity The module system allows us to model both the commonality and
the variability of the replication system separately and incrementally. Specif-
ically, we started modeling the commonality of the product line independent
from the product line’s variability and individual components of the repli-
cation system commonality are modeled in separate modules (and files).
Moreover, we modeled the product line’s variability in terms of delta mod-
ules, this allows variation to be modeled incrementally while dividing delta
modules in terms of the components which variations are to be resolved.

Code reusability DML provides the mechanism to express variability at the
level of behaviour. This together with functional and object composition,
the ABS language provides a wide range of mechanism for code reuse. In
particular the combination of object composition and delta modelling allows
us to achieve code reusability similar to that of class inheritance. In addition,
the ABS module system also allows more generic definitions such as data
types and functions to be reused across the ABS model of the product line.
Nevertheless, while the current implementation of DML supports original()

in method modifiers, which invokes that method’s previous implementation,
it does not support original() of a specific implementation, this has reduced
code reusability when resolving conflict [12]. At the time of writing, DML is
being improved to support delta-specific original().

Timing and resource information The current ABS semantics does not take
time and the environment’s resources into consideration. This separation of
concerns allows one to focus on functional and partial correctness. Never-
theless, at the time of writing, an implementation of a real-time extension
of the ABS language is being developed [24]. This would allow ABS mod-
els to express behavioural constraints due to timing information as well as
the resources of the environment. This would enable one to analyse an ABS
model with specific environment constraints such as process speed, memory
etc.

6.3 Usability

In this section we evaluate ABS with respect to its overall usability, focusing on
the ease of adoption and learnability, and taking into account the ABS tool suite
as well as the language’s syntax and semantics.

Note that the case study has been conducted in tandem with the development
of the ABS language and tool suite, the case study, which has been conducted
over the span of 14 months, has consequently led to many enhancement and fixes.
Specifically, the HATS project employs an open source ticket tracking system
(http://trac.edgewall.org/) to track bugs and feature requests, and the case
study has brought about ten enhancements and over sixty fixes. As the ABS



tool suite has been at development stage during the case study, our evaluation
of usability would take this into account.

Syntax and semantics ABS has been designed to be as easy to learn as pos-
sible by building on language constructs well known from mainstream pro-
gramming languages. Both functional and sequential imperative fragments of
ABS can be easily acquainted by users with a working knowledge of any func-
tional and object-oriented languages. However, it seems not as easy at first
to learn the concurrent fragment of ABS, especially for those who are used
to the multithreaded concurrency model. We believe this issue is remedied
in twofold: 1) the availability of literature such as the technical papers [23,
13], the tutorial chapter [11] and case studies [18], and 2) the support of the
ABS tool suite [36].

Compiler front end The ABS tool suite comes with a front end that takes an
ABS model, performs parsing and type checking, and outputs the model’s
Abstract syntax tree (AST). The design of the ABS language and the avail-
ability of the front end guarantees that the ABS model constructed in the
case study is well-typed. Moreover, the front end allows product derivation
based on the the ABS model’s product line configuration and product selec-
tion.

Maude/Java back ends The current version of the ABS tool suite comes with
a back end for Maude and Java: The Maude back end takes the type checked
AST of an ABS model and outputs the corresponding Maude model that
can be then simulated using the Maude engine (maude.cs.uiuc.edu). Us-
ing both the front end and the Maude back end, we were able to quickly
simulate multiple versions of the replication system. The ABS tool suite also
provides a Java back end that takes the type checked AST of an ABS model
and outputs the corresponding Java source codes that can be compiled and
executed independently. We have found the Java back end to be particularly
useful when used in conjunction with the ABS debugger.

Eclipse plugin – The ABS Eclipse plugin provides syntax highlighting, content
completion and code navigation similar to those provided by the Eclipse
JDT (www.eclipse.org/jdt) for Java. The plugin also integrates the front
end and back ends as a singe source technology such that construction,
compilation and simulation of ABS models can be carried out directly via the
Eclipse IDE. We have found the availability of the IDE greatly increases the
scalability of the HATS approach during modeling. The ABS Eclipse plugin
can be installed as a bundle via its Eclipse update site tools.hats-project.
eu/update-site. A recent version of the ABS Eclipse plugin provides the
capabilities to import and navigate ABS packages; ABS packages are JAR
files containing ABS source codes. We believe this feature increases ABS’s
applicability in the industry where collaborative software development is
prevalent and third party libraries are heavily used.

Debugger The ABS Eclipse plugin offers a debugging perspective for debugging
ABS models. The novelty of this perspective is that users can define explicitly
the order in which asynchronous method invocations are executed within a



concurrent object group. The debugger also offers the option to save and
replay histories of asynchronous method invocations. These facilities greatly
ease our task of debugging and reproducing bugs during the case study.

Visualization Through the ABS Eclipse plugin’s debugging perspective, the
ABS tool suite offers a visualization tool that generates UML sequence di-
agrams of asynchronous communications between concurrent object groups
during the debugging session. Sequence diagrams provide high-level views of
the communications between components in the replication system, and this
increases our understanding of the system’s concurrent behaviour.

7 Related work

In this section we consider related work in the context of abstract behavioural,
variability modelling, and evaluating SPL engineering methodologies.

The ABS language is a modelling language that aims to close the gap be-
tween design-level notations and implementation languages. The concurrent ob-
ject model of ABS based on asynchronous communication and a separation of
concern between communication and synchronization is part of a trend in pro-
gramming languages today, due to the increasing focus on distributed systems.
For example, the recent programming language Go (http://golang.org, pro-
moted by Google) shares in its design some similarities with ABS: a nominal type
system, interfaces (but no inheritance), concurrency with message passing and
non-blocking receive. The internal concurrency model of concurrent objects in
ABS stems from the intra-object cooperative scheduling introduced in Creol [16]
This model allows active and reactive behavior to be combined within objects
as well as compositional verification of partial correctness properties [1].

Existing approaches to express variability in modelling and implementation
languages can be classified into two main categories [35, 25]: annotative and
compositional. As a third approach, model transformations are applied for rep-
resenting variability mainly in modelling languages.

Annotative approaches consider one model representing all products of the
product line. Variant annotations, e.g., using UML stereotypes in UML mod-
els [19] or presence conditions [15], define which parts of the model have to be
removed to derive a concrete product model. The orthogonal variability model
(OVM) proposed in Pohl et al. [31] models the variability of product line ar-
tifacts in a separate model where links to the artifact model take the place of
annotations. Similarly, decision maps in KobrA [7] define which parts of the
product artifacts have to be modified for certain products.

Compositional approaches, such as delta modelling [33], associate model frag-
ments with product features that are composed for a particular feature config-
uration. A prominent example of this approach is AHEAD [9], which can be
applied on the design as well as on the implementation level. In AHEAD, a
product is built by stepwise refinement of a base module with a sequence of fea-
ture modules. Design-level models can also be constructed using aspect-oriented
composition techniques [21, 35, 30]. Apel et al. [2] apply model superposition to
compose model fragments.



In feature-oriented software development (FOSD) [9], features are considered
on the linguistic level by feature modules. Apart from Jak [9], there are various
other languages using the feature-oriented paradigm, such as FeatureC++ [3],
FeatureFST [4], or Prehofer’s feature-oriented Java extension [32]. In [29, 4], com-
binations of feature modules and aspects are considered. In [5], an algebraic rep-
resentation of FOSD is presented. Feature Alloy [6] instantiates feature-oriented
concepts for the formal specification language Alloy.

Model transformations are used to represent product variability mainly on
the artifact modelling level. The common variability language (CVF) [20] repre-
sents the variability of a base model by rules describing how modelling elements
of the base model have to be substituted in order to obtain a particular product
model. In [22], graph transformation rules capture artifact variability of a single
kernel model comprising the commonalities of all systems.

There have been interests to evaluate SPL methodologies using case stud-
ies [26, 27]. In Lopez-Herrejon et al. work [26], for example, they propose the
Graph Product Line (GPL) as a standard problem to implement for evaluating
SPL methodologies. In this work they compare qualities such as performance and
lines of code between implementations of GPL using the GenVoc SPL methodol-
ogy [8]. There are also evaluation strategies that focus on other concerns such as
tool support. For example, Matinlassi [28] compares several SPL methodologies
with respect to qualities such as tool support, guidance and application domains.

8 Summary

In this paper, we presented an evaluation on the HATS approach by conducting a
case study on an industrial-scale software product line of a distributed and highly
configurable software system using the ABS language and its accompanying ABS
tools suite. We modelled the replication system’s commonality using Core ABS
and the replication system’s variability using the Full ABS. At the time of writing
the replication system product line ABS model consists of 5000 lines of code, and
defines 40 classes, 43 interfaces, 15 features, 8 deltas and 12108 products. Based
on the case study we provided an evaluation of the ABS language with respect
to practical expressiveness and modeling capabilities, scalability and usability.

By performing the case study in tandem the development of the HATS ap-
proach, we were able to provid timely feedback on language expressiveness and
the applicability of the modeling tools. The work on the case study has influ-
enced decisions in the design of the ABS language, and in both the enhancements
and fixes to the tools suite. As the HATS approach continues to mature, we aim
to extend the replication system case study to capture further variabilities and
evolution scenarios, and to conduct formal validation and verification of the
replication system using the formal analysis tools developed for ABS models.
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